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A self-consistent description is given for the propagation of a weak optical probe beam through a homogeneously
broadened two-level medium in the presence of a strong, collinear, near-resonant pump beam. The propagation
of the probe beam is given in terms of bichromatic natural modes, which contain frequency components symmetri-
cally displaced from that of the pump beam. The two frequency components have a definite relative amplitude
and phase, which are determined solely by the frequency detunings of the optical fields from the atomic resonance
and by the intensity of the pump field. A simple method for calculating these natural modes is derived, and their
importance in describing nearly degenerate four-wave mixing, optical bistability, and the stability of homogeneous-
ly broadened ring lasers is discussed.

The propagation of a weak, monochromatic probe
beam, tuned near a resonance frequency of an atomic
vapor, is profoundly influenced by the presence of a
strong monochromatic pump field that is nearly reso-
nant with the same transition. A probe field injected
into the medium with a frequency detuned by an
amount 5v from the frequency wo of the pump field will
be strongly coupled to another frequency component
of the field, symmetrically detuned from wo by the
amount -6v. The coupling between these two mono-
chromatic-field components is often so strong that the
problem is better described in terms of its natural
modes, which are linear combinations of these two side
bands with well-defined relative amplitudes and
phases.

In this Letter we derive the form of these natural
modes and show that in general (for a noninverted
medium) one mode will experience loss while the other
may experience gain. A probe field will, on propagation
through the medium, develop into one of these natural
modes. Previous work has calculated the induced po-
larization in the medium for assumed relative ampli-
tudes and phases of the two coupled frequency com-
ponents of the probe field. The probe gain and dis-
persion are calculated subject to this arbitrary ansatz. 1"2

Such calculations are appropriate only for propagation
through a distance short compared with the Beer length
of the medium.

Our analysis is applicable to resonantly enhanced,
nearly degenerate four-wave mixing in atomic vapors, 2

in which the coupling between the two side bands has
been observed.1' 3 It is also applicable to the treatment
of bistability involving a two-level medium placed inside
a resonant ring cavity4 and to the stability analysis of
an unidirectional homogeneously broadened ring laser
far above threshold.5

We obtain the natural modes of the probe field using
self-consistent semiclassical radiation theory: the
medium is described by the Bloch equations, and the
field is described by the reduced Maxwell equations.6
By self-consistency we mean that we solve these equa-
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tions simultaneously, including the effect both of the
field on the atom and of the atom on the field.

The field is assumed to be a plane wave propagating
in the z direction and can be written in the form

E(z, t) = 2 Re[Q(z)exp iwot + b6+(z)exp i(coo + 3v)t
+ bj&(z)exp i(coo - 6v)t]

_ 2 Relj(z, t)exp i[wot - koz + ko(z)]), (1)

where

&(z, t) = 6o(z) + 66(z, t),

6J(z, t) = 6 6'(z)[cos 4 exp i JŽ
+ sin 4 exp i(4 + 0)],

(2)

(3)

and

) = evt -- z + 01(Z). (4)

The slowly varying complex amplitude of the total field
is denoted here as 6'(z, t) = C'(z, t) + iC"(z, t) (we
consistently use the tilde to denote complex quantities),
and the magnitude of the vacuum wave vector of the
pump field is denoted as ko = wo/c. The phase varia-
tion of the pump field that is due to the dispersion of the
medium is denoted as 00(z) and is defined such that the
pump-field amplitude 60(z) is everywhere a real
quantity. The probe-field amplitude is denoted as
b6(z, t) = 66'(z, t) + i6b'(z, t). The phase of the
probe field varies spatially relative to that of the pump
field because of their vacuum wave-vector difference
bv/c and as 01(z) because of the dispersion of the me-
dium. At fixed z, b6(z, t) periodically sweeps out an
elliptical orbit in the complex 6 plane, as shown in Fig.
1. Finally, we define the natural modes of the probe
field as the linear combinations of the two side bands
for which the amplitude ratios tan A and relative phases
0 do not vary with propagation distance z.

We assume that the components of the Bloch vector
can be decomposed into a contribution that is due to the
pump and a small perturbation that is due to the probe
so that 4u(z, t) = uo(z) + &u(z, t), v(z, t) = vo(z) + 62v(z,
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66"'(z, t) = Re [j&"(z)expi (6vt -cV Z (7)

Complex 6 Plane

Fig. 1. The complex amplitude of the total electric field
decomposed into the pump amplitude 40 (z) and the probe
amplitude b66z, t). In the complex 6 plane, E0(z) lies along
the real axis while b6(z, t) revolves periodically around an
ellipse.

t), and w(z, t) =w 0 (z) + 6w(z, t). If we substitute this
perturbation expansion into the Bloch equations and
neglect terms quadratic in the perturbation, we arrive
at a linear set of equations for the perturbed Bloch
vector:

/6X40 /-T -i\ °~~ \6-a
5u / / -A 6 0

dt T2~ ~ b u

+ KW(5)
kKiCU66' - KV066" 

The detuning of the pump laser from the atomic reso-
nance is denoted A = wn- wo, K = 2d/h is proportional
to the transition dipole moment, and T1 and T 2 are,
respectively, the longitudinal and transverse relaxation
times. 7

In a similar fashion we find the reduced Maxwell
equations for the probe field coupled to the perturbed
Bloch vector:

( 3+ 1 6a) b ) = ko ( 0 1i6)'(
\@ c tl6'" Oz -I 0 \66"

+ a 1T
2KT2 t-6-a

This representation is identical with that introduced
in the theory of polarized light in which the polarized
field is represented by the complex two-dimensional
Jones vector.8 The complex amplitudes then satisfy
the equation

a jbe(z)
az VJ"(z)|

awo(z) 
2J(z) [I + (AT2 )2 ]

(611(Z) 612(Z) \M6'(z) 1
b 2 1(z) b2 2 (Z)J\66 (Z)J

(8)

where we have introduced the following coefficients:

611(z) = (1 + iebPT2) [i + (AT2)2
- 1 t

b62(z) = AT2 OvT2(2 + ibvT 2 ),

621(z) = AT2(2 + i6vT2) v6T2 - -fi

622(Z) = (1 + i6vT 2)[1 + (AT2)2 ] + 1 +° ivT

P(z) = (1 + i6vT2 )2 + (AT2)2 + iT 2) I(Z)
the normalized population difference

1 + (AT2)
2

WOf) Weq 1 + (AT2 )2 + 10(z)

and the dimensionless intensity of the pump field

1 0(z) = K2 T1T 2 &0
2 (Z).

For a pump field detuned far from resonance or suf-
ficiently strong to saturate the atomic absorption, the
spatial variation of Io(z) is small, and the coefficients
in Eq. (8) are nearly constant. In this Letter we limit
our discussion to a mean-field or nondepleted-pump
approximation by taking Io to be constant, and there-
fore the solution to Eq. (8) will satisfy

cz 6C"(z)J ( Oz )56&"(z))

(6)

The constant a is the unsaturated reciprocal Beer ab-
sorption length at line center. The propagation of the
probe field is described by the self-consistent solution
of Eqs. (5) and (6).

Equation (5) is a driven, linear differential equation,
and thus its harmonic particular solution can be found
exactly for arbitrary probe-field amplitudes and the
results substituted into Eq. (6). The most convenient
way to carry out this procedure is to introduce a complex
representation: c6'(z, t) and 5&"(z, t) are taken as the
real parts of complex amplitudes oscillating at the
harmonic frequency 6p,

60'(z, t) = Re [6J'(z)exp i (vt -- z)|Z

-11- Ie6/(Z) (9)

The eigenvalue equation that results from Eqs. (8) and
(9) defines the natural modes of the probe field. The
eigenvalues

I2 at - 4P[l + (AT2 ) 2] 1(11 + 622)

i [(cii - b22)2 + 4b1 2b211J"2 (10)

are the complex absorption coefficients of the natural
modes. The associated eigenvectors represent what will
be called the plus and minus modes.

To illustrate the natural-mode solution, four cases are
graphically displayed in Fig. 2. Case 1 assumes a
pump-field detuning of AT2 = 3 in the limit that the
pump field has zero intensity. Case 2 is a resonant
pump field (AT2 = 0) with Rabi frequency KT2 C0 = 8

,eil , - -- -" SX(Z't)00.(Z) i a -I. - -.WI' -
-I I -Jl I
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CASE I CASE 2 CASE 3 CASE 4

Su T2 POSEE WAVE DETU- NC

Fig. 2. Graphically illustrated are the relative amplitude and
phase difference of the two side bands and the absorption and
dispersion coefficients as functions of the probe-wave de-
tuning 3vT2 for the natural-mode solution. The solid and
dotted lines are for the plus and minus modes, respectively.
The four cases illustrated are (1) KT 2 6 0 = 0 and AT 2 = 3; (2)
KT260 = 8, AT2 = 0, and T 2 /T1 = 2; (3) KT 26 0 = 8, AT 2 = 3,
and T 2 /T1 = 2; and (4) KT 2 60 = 8, AT 2 = 3, and T 2 /T, -
0.02.

and purely radiative broadening (T2 /T, = 2). Cases 3
and 4 treat a pump field with Rabi frequency KT2 e0 =
8 and detuning AT2 = 3. Case 3 treats purely radiative
broadening, whereas Case 4, T 2 /T, = 0.02, corresponds
to rapid collisional dephasing. In all the figures, the
plus mode is shown by the solid line and the minus mode
by the dotted line.

In the first row of Fig. 2 we have graphed the quantity
sin 4 as a function of probe detuning AT2 . From Eq.
(3) we see that sin 4' is the normalized amplitude of the
-6v side band in the coupled solution. The phase dif-
ference 0 between these two side bands is plotted in the
second row. Case 1 shows that for a zero-intensity
pump field the natural modes are simply the two un-
coupled side bands. For Case 2, the minus and plus
natural modes are linear combinations of the two side
bands with equal magnitude. For the minus mode the
side bands are in phase; for the plus mode they are 1800
out of phase. The natural modes of the probe field for
the exactly resonant pump are therefore the AM and
FM modes. Cases 3 and 4 illustrate that strong cou-
pling occurs between the two side bands whenever I bvl
$ (A2 + K2&o2)1/2. This coupling is enhanced by strong

collisional dephasing. The phase-difference curves for
the plus and minus modes are symmetric about and
asymptotically approach the value 0 = cotan-'(AT 2 ).

In the third row, the real part of the complex ab-
sorption coefficient (which gives rise to absorption) is
plotted as a function of the probe-wave detuning. One
half of the imaginary part of the complex absorption
coefficient (which gives rise to dispersion) is displayed

in the fourth row. Both coefficients are normalized by
the Beer absorption length a.

For an absorber, the minus mode may have gain for
probe detunings I <vi ; (K2 Co2 + A 2)1/2, as illustrated in
Cases 2-4. The steady-state, bistable transmission of
a cw-driven ring cavity containing the two-level ab-
sorber will become unstable if the gain of a minus mode
is greater than the round-trip loss. Cavity boundary
conditions, including the probe-field dispersion, must
also be met. Gain occurs for the minus mode only when
the two side bands are strongly coupled. This explains
the appearance of both side bands in experiments on
nearly degenerate four-wave mixing in extended
media.

For a pump laser-detuned from resonance, the plus
mode has two or three absorption peaks. One may be
at the laser frequency while the other two are symmet-
rically displaced from the pump frequency by ap-
proximately the generalized Rabi frequency, i.e., I bvi 
(K2 ,go2 + A2 )1/ 2 . The minus root also has an absorption
peak at the generalized Rabi frequency. The absorp-
tion of the plus mode at the central peak is equal to the
saturated absorption coefficient of the pump field. For
an inverted medium, these absorption peaks become
regions of gain. A homogeneously broadened laser
cannot run in a single mode if the gain near the Rabi side
bands exceeds that of the central peak and if the natural
mode in question satisfies the cavity-boundary condi-
tions. This may happen for either the minus (Case 2)
or the plus (Case 3) mode or both (Case 4).

In conclusion, we have shown that the self-consistent
treatment of a probe beam propagating through a
driven two-level medium is described in terms of bi-
chromatic natural modes. The natural modes permit
a simple interpretation of results in nearly degenerate
four-wave mixing and are the proper modes for ana-
lyzing the stability of homogeneously broadened ring
lasers and bistable ring cavities.
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